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A set of linear equations of motion for rectangular plates undergoing prescribed overall
motion is derived in this paper. Two in-plane stretch variables, with which the in-plane
strain energy of the plate can be expressed in an exact quadratic form, are employed and
approximated to derive the equations of motion. The equations of motion include
motion-induced sti!ness variation terms, which are expressed as explicit functions of the
prescribed overall motion. The e!ects of the motion-induced sti!ness variation terms, which
are neglected in the conventional linear modelling method, on the dynamic response of the
plate are investigated. The reliability and the accuracy of the equations of motion which are
derived in the present work are examined through the numerical study.
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1. INTRODUCTION

Flexible structures undergoing overall motion are often found in engineering examples such
as turbine blades, aircraft rotary wings, and spacecraft appendages. It is well known that the
overall motion (translational or rotational motion) may cause signi"cant variations of
dynamic characteristics of the structures. If the variations are not properly considered,
erroneous numerical results are often obtained. Therefore, the variations should be
accurately estimated and considered for the #exible structures undergoing overall motion.

Flexible structures having slender shapes are often idealized as beams since reliable and
robust theories for beams, which can provide accurate numerical results in most cases, are
available. Many structures, however, have plate-like shapes (rather than beam-like shapes).
Solar panels of satellites, low-pressure stage turbine blades, and aircraft rotary wings with
small aspect ratios are such examples. For these structures, numerical results obtained by
using beam theories may cause signi"cant errors in estimating their dynamic responses.
Therefore, accurate modelling methods for the dynamic analysis of plate-like structures are
required.

The modelling method which is most widely used for the dynamic analysis of a #exible
structure is often called as the conventional linear modelling method [1}3], which employs
Cartesian deformation variables along with the linear Cauchy strain measure. This
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modelling method has several merits such as simplicity of formulation, ease of
implementation in "nite element methods, and availability of the co-ordinate reduction
technique [4], which enables one to save enormous computation time for the dynamic
analysis of structures. However, this modelling method often provides erroneous dynamic
analysis results for the structures undergoing overall motion. It was found that the
modelling method failed to capture proper motion-induced sti!ness variation e!ects (see,
for instance, reference [5]). To resolve the problem, several non-linear modelling methods
[5}8] were introduced and the accuracy problem (that the conventional linear modelling
method entailed) could be remedied. However, enormous computational burden results
from the non-linearity of the modelling methods, which disables the co-ordinate reduction
technique.

More recently, a new linear modelling method [9, 10] was introduced for the transient
analysis of #exible beams undergoing overall motion. Di!erent from the conventional linear
modelling method, this linear modelling method employs a non-Cartesian deformation
variable which is approximated to derive the equations of motion. It was proved that the
use of the non-Cartesian variable led to capture accurate motion-induced sti!ness variation
e!ects. Thus, this modelling method is as e$cient (due to its linearity) as the conventional
linear modelling method and as accurate as the non-linear modelling methods. This
modelling method, however, has not been extented to plates so far. Actually, numerical
results for the transient analysis of plates undergoing overall motion are rarely available in
the literature. Even though a non-linear formulation for plates undergoing overall motion
was suggested in reference [11], numerical results were not given in the work. Some
numerical results for the vibration analysis of rotating plates are available in references
[12, 13].

The purpose of this paper is to present an accurate and e$cient linear-modelling method
for plates undergoing prescribed overall motion. The key ingredient of the modelling
method is the use of two stretch variables which are to be approximated. The use of the two
stretch variables enables one to derive linear equations of motion which include proper
motion-induced sti!ness variation terms due to overall motion. This modelling method is
the extension of the modelling method for beams introduced in reference [10]. The accuracy
of the present modelling method is examined by comparing its results with some existing
results. Numerical results obtained by using the present modelling method are also
compared with those obtained by using the conventional linear modelling method so that
the importance of the motion-induced sti!ness variation e!ects can be clearly exhibited.

2. EQUATIONS OF MOTION

In this section, equations of motion of a rectangular plate undergoing prescribed overall
motion are derived. The following assumptions are made. The plate has homogeneous and
isotropic material properties. The thickness of the plate is uniform and small compared to
other dimensions of the plate so that the Kirchho! hypothesis can be employed. So the
transverse shear and the rotary inertia e!ects are neglected in this work. These assumptions
are made to simplify the formulation and focus on the major issue of the present work,
which is involved with the sti!ness variation due to overall motion.

Figure 1 shows a rectangular plate which has uniform thickness. By the Kirchho!
hypothesis, any straight line segments perpendicular to the midplane of the plate before
deformation remain perpendicular to the midplane after deformation. Therefore, any one of
them can be used as a rigid reference frame for the plate. In this work, the straight line
segment at a corner of the rectangular plate is used as the reference frame of the plate as
shown in the "gure. A unit vector triad (aL

1
, aL

2
, and aL

3
) is "xed to the reference frame.



Figure 1. Rectangular plate and its reference frame.

Figure 2. Deformation variables for a rectangular plate.
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Figure 2 shows the midplanes of a rectangular plate before and after deformation. The
elastic deformation of a generic point in the midplane is denoted as u (vector from point
P
0
to point P shown in the "gure). Three Cartesian variables (u

1
, u

2
, and u

3
as shown in the

"gure) are employed to express the elastic deformation vector. Conventionally, the three
Cartesian deformation variables are approximated to obtain ordinary di!erential equations
of motion. In the present study, however, u

1
and u

2
are not approximated while u

3
is

approximated. Instead, two in-plane stretch variables (s and r shown in the "gure) are
approximated. Thus, by using the Rayleigh}Ritz method, they can be expressed as follows:

s(x, y, t)"
k
+
j/1

/
1j

(x, y)q
j
(t) , (1)

r(x, y, t)"
k
+
j/1

/
2j

(x, y)q
j
(t) , (2)

u
3
(x, y, t)"

k
+
j/1

/
3j

(x, y)q
j
(t) , (3)

where /
1j

, /
2j

, and /
3j

are spatial mode functions. Any compact set of admissible functions
which satisfy the geometric boundary conditions of the plate can be used as the mode
functions (see reference [14]). In the present work, the eigenfunctions of rectangular plates
(with no overall motion) are employed as the mode functions. q

j
1s are generalized

co-ordinates and k is the total number of the generalized co-ordinates. For the convenience
of formalism, s, r, and u

3
use the same number of co-ordinates k. However, they are not

actually coupled. For instance, /
1j

is not zero only if j)k
1
; /

2j
is not zero only if
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. In other words,

k
1
, k

2
, and k

3
denote the actual number of generalized co-ordinates for s, r, and

u
3

respectively. k is the total sum of k
1
, k

2
, and k

3
.

The strain energy of a plate can be expressed as follows:

;";
i
#;

b
, (4)

where;
i
and;

b
represent the in-plane and the bending strain energies which are expressed

(by employing the deformation variables s, r, and u
3
) as follows:
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where a and b denote the length and the width of the plate, and

b
1
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Eh

(1!l2)
, (7)

b
2
"Gh , (8)

b
3
"

Eh3
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, (9)

where E, G, l, and h represent Young's modulus, the shear modulus, Poisson ratio, and the
thickness of the plate respectively. Since the stretch variables s and r are employed, equation
(5) represents the exact in-plane strain energy of the plate.

By using the strain energies given in equations (5) and (6), the generalized active forces
(see reference [15]) can be obtained as follows:

F
i
"!

L;
Lq

i

, (i"1, 2,2, k) . (10)

The use of s and r results in the exact in-plane strain energy which is expressed in
a quadratic form. Thus, linear generalized active forces can be obtained. It, however,
complicates the formulation of generalized inertia forces in the equations of motion. The
generalized inertia forces (see reference [15]) can be obtained by using the following
equation:

F*
i
"!P

b

0
P

a

0

oA
LvP

LqR
i
B ) aPdx dy (i"1, 2,2,k) , (11)

where o is the mass per unit area of the plate; qR
i
's are the time derivatives of the generalized

coordinates; and vP and aP are the velocity and the acceleration of the generic point P. The
velocity of point P can be obtained from the following equation:

vP"vO#xA](p#u)#AvP , (12)

where vO is the velocity of point O which is the reference point "xed in the rigid frame A; xA

is the angular velocity of the rigid frame A; p is the position vector from O to P
0
; and AvP is
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the relative velocity of P observed from the rigid frame A, which can be obtained by taking
the time derivative of u in the rigid frame A. By using the component notation, vO, xA, p and
AvP can be expressed as follows:

vO"v
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2
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3
, (13)
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By substituting equations (13)}(16) into equation (12), the velocity of point P can be
obtained as follows:
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Since u
1

and u
2
shown in equation (17) are not approximated, they need to be replaced by s,

r, and u
3
. The geometric relations between the in-plane stretch variables and the Cartesian

deformation variables are given as follows:
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By using the binomial expansion theorem (since linear equations of motion are to be
derived eventually), the above two equations can be approximated (without a!ecting the
"nal results) as follows:

s"u
1
#1

2P
x

0
CA

Lu
3

Lm B
2

Ddm , (20)

r"u
2
#1

2P
y

0
CA

Lu
3

Lg B
2

Ddg . (21)

Di!erentiations of equations (20) and (21) with respect to time yield
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Thus, uR
1

and uR
2

in equation (17) can be replaced by sR , rR , and uR
3
. By using equations (22) and

(23) along with equations (17) and (1)}(3), the partial derivative of vP with respect to qR
i
can be
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obtained as follows:
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By simply di!erentiating the velocity shown in equation (17) with respect to time, the
acceleration of point P can be obtained. Then, by substituting the acceleration and the
partial velocities shown in equation (24) into equation (11), the generalized inertia forces can
be obtained. The substituting procedure is trivial except applying the integral by parts
theorem as follows:
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Finally, the generalized inertia forces are linearized to obtain the following linear equations
of motion:
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The sti!ness matrix elements shown in equations (40)}(44) are used for the "ve
motion-induced sti!ness variation terms in equation (33), which do not appear if the
conventional linear modelling method is employed to derive the equations of motion. Due
to the lack of these terms, the conventional linear modelling method often produces
erroneous results for the dynamic analysis of plates undergoing overall motion. As shown in
equation (33), the "ve motion-induced sti!ness variation terms are expressed as functions of
the overall motion of the plate, which consists of translational, Coriolis, and centrifugal
acceleration components. It can also be found that those acceleration components cause
in-plane stretching of the plate. Therefore, one can conclude that the conventional linear
modelling method can be used reliably unless the overall motion of the plate causes in-plane
stretching.

Equations (31)}(33) can be used for the transient analysis of a plate undergoing overall
motion. If the coupling e!ect between stretching and bending motions is negligible,
equation (33) can be used independently after ignoring all the coupling terms appearing in
the equation. Since the natural frequencies of stretching modes are usually much higher
than those of bending modes, equation (33) can be also used for the bending vibration
analysis of a plate undergoing overall motion.

3. NUMERICAL RESULTS

Figure 3 shows a rectangular cantilever plate. The geometric and the material data for the
plate are given in Table 1. The plate is attached to a rigid hub which undergoes a rotational
motion. The angular speed of the plate is given as follows:

X"X
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¹
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!

1

2n
sin
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¹
s
B (0)t)¹

s
),

(48)
X"X

s
(t'¹

s
) .

This function is often called a spin-up function which increases very smoothly and reaches
a steady state angular speed. After reaching the steady state angular speed, the angular
speed is maintained constant. Since this function has the varying region as well as the
constant region, it is often employed to represent a general prescribed motion. X

s
and ¹

s
in

equation (48) represent the steady state angular speed and the time required to reach the
steady state angular speed respectively.

Figure 4 and 5 show the lateral de#ection (measured with respect to the rotating rigid
frame) of the point P which is located at the free end of the cantilever plate. Five seconds is
used for ¹

s
and 10 and 20 rad/s are used for X

s
to obtain the results shown in Figures 4 and



Figure 3. Rectangular plate undergoing rotational motion.

TABLE 1

The geometric and the material data for the plate

Notation Data

Length a 1)0 m
Width b 0)5 m
Thickness h 0)0025 m
Radius r 0)0 m
Young's modulus E 7)0E10 N/m2
Shear modulus G 2)7E10 N/m2
Poisson's ratio l 0)3
Mass per unit area o 7)5 kg/m2

Figure 4. Numerical results obtained by present and conventional modelling methods (for the case of
X

s
"10 rad/s). **, Present modelling; )))))))), Conventional modelling.
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5 respectively. The results in Figures 4 and 5 are obtained by the present authors. It is shown
that the results obtained by the present modelling method are signi"cantly di!erent from
those obtained by the conventional linear modelling method. Figure 5 shows that the
conventional linear modelling method even provides an improper divergent response. This
improper estimation results from the lack of the "ve motion-induced sti!ness variation



Figure 5. Numerical results obtained by present and conventional modelling methods (for the case of
X

s
"20 rad/s). **, Present modelling; )))))))), Conventional modelling.

Figure 6. Numerical results obtained by the plate and the beam modelling methods (for the case of
X

s
"10 rad/s). **, Plate modelling; )))))))), Beam modelling.
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terms shown in equation (33). While the motion-induced sti!ness variation terms are absent
from the equations of motion obtained by using the conventional linear modelling method,
the third term in equation (33) (which softens the system as the angular speed increases)
remains in the equations of motion and causes the divergent response.

In Figures 6 and 7, the results obtained by using the present modelling method are
compared with those obtained by using a beam-modelling method, which proved to be
accurate in references [9, 10]. It is shown that the lateral de#ections obtained by using the
present modelling method (for plates) are a little bit smaller than those obtained by using
the beam-modelling method. The di!erence results from the Poisson's ratio e!ect which is
only active for plate theories. These results exhibit the reliability of the present modelling
method for plates undergoing overall motion.

Now, the natural frequencies of the rectangular cantilever plate (shown in Figure 3) are
obtained and shown in Table 2. The plate is assumed to be rotating with the steady state
angular speeds. Therefore, in the equation (33), u

2
"X

s
and v

3
"!rX

s
. All the other



Figure 7. Numerical results obtained by the plate and the beam modelling methods (for the case of
X

s
"20 rad/s). **, Plate modelling; )))))))), Beam modelling.

TABLE 2

The natural frequencies of the rectangular Cantilever plate

Angular speed X
s

Southwell Present
(rad/s) Mode (Hz) (Hz)

10 1 2)1243 2)1297
2 8)6299 8)6439
3 13)084 13)081
4 28)406 28)416
5 35)761 35)778

20 1 2)4167 2)4031
2 8)6326 8)6871
3 14)593 14)583
4 29)180 29)213
5 37)430 37)488
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overall motion components are set to zero. The lowest "ve natural frequencies of the plate
obtained by using the present modelling method are compared with those obtained by the
Southwell's method (see reference [12]). The table shows reasonable agreement between the
two results.

Now to show the three-dimensional analysis capability of the present modelling method,
a more sophisticated example is given in Figure 8. The cantilever plate shown in the "gure is
attached to a rigid hub, which is rotating with a spin-up angular velocity. The distance
(denoted as r in Figure 8) from the rotation axis to the reference point O is 0)2 m. Two
co-ordinate systems are attached to the rigid hub. aL

1
and aL

2
are parallel to the length and

the width of the undeformed rectangular plate and aL
3

is perpendicular to the plate. bK
i
's

constitute another co-ordinate system in which bK
2

is parallel to the axis of rotation. The
co-ordinate system aL

i
's can be obtained by 1}2}3 space rotation of bK

i
's. The three rotation

angles are often called Euler angles and their respective values are 15, 0 and 303 in this
example. The other geometrical and the material data are same as those given in Table 2.
Figures 9 and 10 show the lateral de#ections of point P which locates at a corner of the free
end of the cantilever plate. X

s
is 10 rad/s and ¹

s
is 5 or 1 s. Results obtained by using the

present modelling method and the conventional linear modelling method are compared in



Figure 8. More sophisticated example of plate undergoing overall motion.

Figure 9. Numerical results obtained by present and conventional modelling methods (for the case of
X

s
"10 rad/s and ¹

s
"5 s). **, Present modelling; )))))))), Conventional modelling.

Figure 10. Numerical results obtained by present and conventional modelling methods (for the case of
X

s
"10 rad/s and ¹

s
"1 s). **, Present modelling; )))))))), Conventional modelling.
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the "gure. These results indicate that signi"cant error may occur if the conventional linear
modelling method is employed to obtain the dynamic response of a plate undergoing
overall motion. Figure 10 also shows that the maximum de#ection overshoots the steady
state mean de#ection and oscillation occurs at the steady state if an abrupt spin-up motion
(meaning small time constant ¹

s
) is prescribed. Some sample numerical data, which are

presented in Figures 9 and 10, are provided in Table 3 for later comparison study.
Figure 11 shows "ve pictures (at "ve successive instants) of the above example obtained

by the present modelling method. Overall response of the plate can be observed easily with
Figure 11. Dynamic deformation of the rotating plate with respect to time (for the case of X
s
"10 rad/s and

¹
s
"1 s).

TABLE 3

Sample numerical data by the present
modelling method

Lateral de#ection of point P
Time
(t/¹

s
) ¹

s
"5 ¹

s
"1

0)0 0)00000 0)00000
0)2 0)00008 0)04549
0)4 0)00031 0)12870
0)6 0)00068 0)18332
0)8 0)00119 0)17055
1)0 0)00181 0)13972
1)2 0)00257 0)14351
1)4 0)00346 0)14811
1)6 0)00452 0)14939
1)8 0)00579 0)14499
2)0 0)00731 0)14159



Figure 12. Steady state deformed shape of the rotating plate. (a) Top view; (b) Perspective view.
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these pictures. Figure 12 shows the steady state deformed shape of the plate. The numbers of
mode functions for s, r, and u

3
(to obtain the transient results of plate presented so far) are 2,

2 and 5 respectively. Those numbers were con"rmed to be su$cient to achieve the
convergence for the transient results.

4. CONCLUSIONS

A linear modelling method for the dynamic analysis of a rectangular plate undergoing
prescribed overall motion is presented in this paper. The modelling method employs two
stretch variables by which the in-plane strain energy of a plate can be expressed in an exact
quadratic form. Di!erent from the conventional linear modelling method, proper
motion-induced sti!ness variation terms are included in the equations of motion obtained
by the present modelling method. Numerical study shows that the motion-induced sti!ness
variation terms may signi"cantly a!ect the dynamic response of a plate undergoing overall
motion. The reliability and the accuracy of the present modelling method is veri"ed through
transient and vibration analysis of a rectangular plate undergoing rotational motion.
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